Structure–activity relationship

The structure–activity relationship (SAR) is the relationship between the chemical or 3D structure of a molecule and its biological activity. The analysis of SAR enables the determination of the chemical groups responsible for evoking a target biological effect in the organism. This allows modification of the effect or the potency of a bioactive compound (typically a drug) by changing its chemical structure. Medicinal chemists use the techniques of chemical synthesis to insert new chemical groups into the biomedical compound and test the modifications for their biological effects.

This method was refined to build mathematical relationships between the chemical structure and the biological activity, known as quantitative structure–activity relationships (QSAR). A related term is structure affinity relationship (SAFIR).

Contents

SAR and SAR paradox

The basic assumption for all molecule-based hypotheses is that similar molecules have similar activities.[1] This principle is the basis of a SAR. The underlying problem is therefore how to define a small difference on a molecular level, since each kind of activity, e.g. reaction ability, biotransformation ability, solubility, target activity, and so on, might depend on another difference. A good example was given in the bioisosterism review of Patanie/LaVoie.[2]

In general, one is more interested in finding strong trends. Created hypotheses usually rely on a finite number of chemical data. Thus, the induction principle should be respected to avoid overfitted hypotheses and deriving overfitted and useless interpretations on structural/molecular data.

The SAR paradox refers to the fact that it is not the case that all similar molecules have similar activities.

See also

References

  1. ^ Mezey, Paul G.; Carbó, Ramón; Gironés, Xavier (2001). Fundamentals of molecular similarity. New York: Kluwer Academic/Plenum Publishers. ISBN 030646425x. 
  2. ^ Patani GA, LaVoie EJ (December 1996). "Bioisosterism: A Rational Approach in Drug Design". Chemical Reviews 96 (8): 3147–3176. doi:10.1021/cr950066q. PMID 11848856. 

External links